11-循环神经网络
回顾 DNN

什么是RNN


RNN in Pytorch
调用RNN Cell
定义

如何使用RNN Cell
如何使用 RNN





实例

自定义RNN Cell
最后更新于
这有帮助吗?










最后更新于
这有帮助吗?
这有帮助吗?
linear = Linear()
h = 0
for x in X:
h = linear(x,h) => h1 = linear(x1,h0)
=> h2 = linear(x2,h1)
=> ...cell = torch.nn.RNNCell(input_size=input_size,hidden_size=hidden_size)
hidden = cell(input,hidden)import torch
batch_size = 1
seq_len = 3
input_size = 4
hidden_size = 2
cell = torch.nn.RNNCell(input_size=input_size,hidden_size=hidden_size)
dataset = torch.randn(seq_len,batch_size,input_size)
hidden = torch.zeros(batch_size,hidden_size)
for idx,input in enumerate(dataset):
print('='*20,idx,'='*20)
print('Inputs Size:',input.shape)
hidden = cell(input,hidden)
print('Outputs Size:',hidden.shape)
print(hidden)cell = torch.nn.RNN(input_size=input_size,hidden_size=hidden_size,num_layers=num_layers)
out,hidden = cell(inputs,hidden)import torch
batch_size = 1
seq_len = 3
input_size = 4
hidden_size = 2
num_layers = 1
cell = torch.nn.RNN(input_size=input_size,
hidden_size=hidden_size,
num_layers=num_layers)
inputs = torch.randn(seq_len,batch_size,input_size)
hidden = torch.zeros(num_layers,batch_size,hidden_size)
out,hidden = cell(inputs,hidden)
print("Output Size:",out.shape)
print("Output:",out)
print("Hidden Size:",hidden.shape)
print("Hidden:",hidden)