import torch
from torchvision import transforms # 对图像进行处理
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F # 使用激活函数
import torch.optim as optim
class Net(torch.nn.Module):
def __init__(self,):
super(Net,self).__init__()
self.l1 = torch.nn.Linear(784,512)
self.l2 = torch.nn.Linear(512,256)
self.l3 = torch.nn.Linear(256,128)
self.l4 = torch.nn.Linear(128,64)
self.l5 = torch.nn.Linear(64,10)
def forward(self,x):
x = x.view(-1,784)
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = F.relu(self.l3(x))
x = F.relu(self.l4(x))
x = self.l5(x)
return x
model = Net()
def train(epoch):
running_loss = 0.0
for batch_idx,data in enumerate(train_loader,0):
inputs,target = data
optimizer.zero_grad()
# forward + backward + update
outputs = model(inputs)
loss = criterion(outputs,target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[{:d},{:5d}] loss:{:.3f}'.format(
epoch+1,batch_idx+1,running_loss/300))
running_loss = 0.0
测试
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images,labels = data
outputs = model(images)
_,predicted = torch.max(outputs.data,dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print("Accuracy on test set:{:.2%}".format(correct/total))
运行
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()